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Palladium catalyzed C–P cross-coupling reactions in ionic liquids
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bUMR-CNRS 6507, LCMT, ENSICAEN, 6 Bd Maréchal Juin, F-14050 CAEN cédex, France
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Abstract—C–P cross-coupling reactions between phosphine–borane complexes and aryl iodides are successfully performed in imid-
azolium based ionic liquids (ILs). To improve the recycling of the catalyst, a monophosphine covalently attached to a pyridinium
salt was prepared. Associated to palladium, this catalyst shows a high catalytic activity and stays immobilized in the IL. It was
reused at least in six cycles.
� 2006 Elsevier Ltd. All rights reserved.
Since more than 30 years, the prominence of phosphine
ligands in the field of organometallic catalysis is a real-
ity.1 Thus, intensive efforts have been done to produce
phosphines with different steric and electronic proper-
ties. Main approaches involve stoichiometric reactions
between haloarylphosphines and organometallic species,
or phosphide anion and alkyl halides.2 Given the recent
rapid development of a more environment friendly
chemistry, it is surprising that only few contributions
dealing with a greener approach to phosphines have
been reported. A 100% atom efficient method for the
preparation of P-alkyl or P-vinyl substituted phosphines
is the hydrophosphination reaction3 of alkenes and alky-
nes. However, this reaction does not allow the prepara-
tion of the widely used arylphosphines. In order to
develop a greener access to arylphosphines the metal
catalyzed C–P cross-coupling reaction could be a valu-
able solution. However, this methodology has only been
poorly studied4,5 and its technical use still suffers from
some difficulties. The reaction after completion requires
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Scheme 1. C–P cross-coupling reaction in acetonitrile.
an aqueous work up, which damages the catalyst and
precludes its recycling. Furthermore, the extraction of
the highly oxidable phosphines is tedious. Few years
ago, we reported some information on the palladium
catalyzed C–P cross-coupling reaction between aryl iod-
ides and secondary phosphine–borane complexes.6 The
reaction was performed under mild conditions due to
the activation induced by the borane group7 (Scheme
1). However, the catalyst could not be recycled.

The high solvating ability and the immiscibility of vari-
ous ILs8 with many organic solvents should allow the
development of a heterogeneous system in which the
reaction is carried out in the IL and the product recov-
ered by simple liquid–liquid extraction.9 Herein, we
report preliminary results dealing with the use of ionic
liquids as a medium for the C–P cross-coupling reaction.

In our preliminary investigation, we selected meta-iodo-
anisole 1a and diphenylphosphine–borane 2 to examine
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Scheme 2. C–P cross-coupling reaction in [BMIM][PF6].

Table 1. Comparative use of various imidazolium based ILs in the
synthesis of 4a

Conversiona

(%)
ArPh2PBH3

(4a) (%)
ArPh2P
(%)

ArPh2P@O
(%)

[BMIM]-
[PF6]

100 94 1 5

[BMIM]-
[Cl]

100 50 10 40

[BMIM]-
[BF4]

100 70 17 23

a Determined by 31P NMR.
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the feasibility of the reaction in an ionic liquid. Various
imidazolium based ionic liquids ([BMIM][BF4],
[BMIM][Cl] and [BMIM][PF6]) were tested to evaluate
the influence of the hydrophilicity/hydrophobicity of
the IL on the catalytic performance and on the separa-
tion of the ionic liquid and the product. First sets of
C–P cross-coupling experiments were performed under
the conditions optimized for the coupling in volatile
organic solvent (acetonitrile). Typically, a stoichiometric
amount of 2 and 1a was dissolved in [BMIM][PF6]
(10 equiv), potassium carbonate (2 equiv) and 10 mol %
of dpppPdCl2 were added and the heterogeneous mixture
was stirred at rt for 24 h leading to the expected prod-
uct 4a as determined by 31P [1H] NMR spectroscopy
(d = 22.1 ppm). However, these conditions do not afford
good conversion even after extended reaction time
(48 h), and the use of a higher loading of catalyst
(15 mol %) does not provide significantly enhanced rate
or yield. This dramatic decrease of the reaction rate
can be ascribed either to the high viscosity of the IL or
to a lower level of catalytic activity in the IL. To improve
the reaction, the temperature was raised to 70 �C. A com-
plete conversion was obtained after 17 h (monitored
by 31P NMR) (Scheme 2).

After cooling to rt, the product was extracted from the
reaction mixture with toluene. It turns out that for suc-
cessful extraction of 4a, the temperature of the mixture
should be lowered to 0 �C to limit the partial solubility
of toluene in [BMIM][PF6]. Thus after five extractions
with 0.5 mL of toluene, the crude yield in 4a amounted
to 90%. Purification of 4a was then easily performed by
filtration through a pad of silica in air (82% yield).
Under similar conditions, the reaction was also success-
ful on using iodobenzene 1b and phosphine 2. With the
less reactive methylphenylphosphine–borane 3, the reac-
tion required 36 h for a complete conversion to 5a
and 5b.

Under similar conditions, two other salts ([BMIM][BF4]
and [BMIM][Cl]) were tested. The reaction proved to be
less clean due to a partial decomplexation–oxidation of
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Scheme 3. Diphenylphosphine ligand with pyridinium tag.
4a leading to ArPh2P@O. These results can be ascribed
to residual traces of water in [BMIM][Cl] and
[BMIM][BF4], salts which are more hygroscopic than
[BMIM][PF6] (Table 1).

We then turned our attention to the recovering and the
recycling of the palladium catalyst. Thus after extraction
of 4a and outgassing under reduced pressure to elimi-
nate volatiles, the ionic liquid was reused successfully
in a second and a third run by adding to the IL a stoi-
chiometric amount of 2, aryliodide 1a and potassium
carbonate for each cycle. Nevertheless, low conversions
were progressively obtained in the next runs due to a
partial extraction of the catalyst in the organic phase.
To avoid this leaching problem, we decided to increase
the affinity of the catalyst for the ionic liquid by alter-
ation of the ligand structure. Precedents of this strategy
have already given satisfactory results.10 Thus to ade-
quately immobilize the catalyst in the IL phase, we pre-
pared a ligand having an inexpensive pyridinium tag.
The route to ligand 6 was straightforward as depicted
in Scheme 3. Starting from commercially available vinyl-
pyridine, hydrophosphination using 2 under conditions
previously defined by some of us11 (solvent free condi-
tions) afforded phosphine 7 after 16 h at rt. Then alkyl-
ation of the pyridine with methyl iodide gave ligand 6
with 57% overall yield. The characteristic phosphine–
borane signal for 6 was observed in 31P NMR at
d = 16.7 ppm with a 1JPB = 55.8 Hz. Compound 6 was
I
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Table 2. Comparative recycling of the pyridinium-tagged catalyst
derived from 6 and dpppPdCl2

Catalyst Cycle 1 2 3 4 5 6 7

dpppPdCl2 Conversiona

(%)
>98 95 97 33 — — —

6/Pd(OAc)2 >98 98 94 95 90 88 42

a Determined by 31P NMR spectroscopy with 2 and 1b as substrates.
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fully characterized by 1H, 13C, 31P, 11B NMR and
HRMS.12

[BMIM][PF6] containing 15% of 6 and 5% of Pd(OAc)2

was stirred at 70 �C for 30 min and then used as a reaction
medium for the C–P cross-coupling reaction between 1b
and 2 under the previously defined conditions. We were
pleased to see that this cheap and easily prepared new
catalyst displayed a high activity comparable to that of
the expensive dpppPdCl2 catalyst. The reaction was
completed in 17 h at 70 �C. It is noteworthy that depro-
tection of the phosphine–borane 6 before its use was not
required13 and occurred directly when 6 was mixed with
Pd(OAc)2. With this new catalyst, it was possible to
recycle both the IL and the catalyst at least six cycles
without significant loss in activity (Table 2).

In conclusion, we have shown that the C–P cross-coupl-
ing reaction between a phosphine–borane and an aryl
iodide can be performed with success in imidazolium
based ionic liquids. The best results were obtained in
[BMIM][PF6] with an excellent preservation of the phos-
phine–borane complexes. One of the main advantages of
using ILs instead of classical organic solvents is related
to the easy separation of the product and the catalyst
without any aqueous work-up, which is often detrimen-
tal for phosphines. Moreover, in this new medium, the
palladium catalyst (dpppPdCl2) can be recycled three
times. To improve the recycling, a monophosphine
covalently attached to a pyridinium salt was prepared.
Associated to palladium, this ligand showed a high cat-
alytic activity for the C–P cross-coupling. The catalyst
stayed immobilized in the IL and was reused at least
six times without significant loss in activity. Extension
of the reaction to more challenging substrate is currently
under investigation.
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